2016
DOI: 10.5121/ijaia.2016.7504
|View full text |Cite
|
Sign up to set email alerts
|

Arabic Online Handwriting Recognition Using Neural Network

Abstract: ABSTRACT

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 10 publications
0
4
0
1
Order By: Relevance
“…Mars A, Antoniadis G (2016) [10] created an Arabic database with "6090-Characters" and "1080-Words" for word and character recognition. The classification was done by employing a "Neural Network" and a "Time-Delay Neural Network (TDNN)".…”
Section: Related Workmentioning
confidence: 99%
“…Mars A, Antoniadis G (2016) [10] created an Arabic database with "6090-Characters" and "1080-Words" for word and character recognition. The classification was done by employing a "Neural Network" and a "Time-Delay Neural Network (TDNN)".…”
Section: Related Workmentioning
confidence: 99%
“…Selain menggunakan CNN ada juga penelitian yang menggunakan metode Multi Layer Perceptron (MLP) seperti yang dilakukan oleh Ashiquzzaman et al [12] pada tahun 2017 dengan akurasi sebesar 93,8% dan Das et al [13] pada tahun 2006 dengan akurasi sebesar 94,93%. Tak hanya CNN dan MLP juga ada penelitian yang menggunakan metode Time Delay Neural Network (TDNN) yang dilakukan oleh Mars et al [14] pada tahun 2016 dengan akurasi sebesar 98,5%.…”
Section: Pendahuluanunclassified
“…In [27] presented a model for Optical Character Recognition (OCR) in Telugu language, which includes three parts: a database of Telugu characters, a deep learning-based OCR algorithm and an online client-server application for the developed algorithm. Their model based on Convolutional Neural Networks (CNNs) algorithm reasonably to classify the characters.…”
Section: Related Work On Convolutonal Neural Network Techniquesmentioning
confidence: 99%