Multiple Serially-Concatenated Multiple-Parity-Check (M-SC-MPC) codes are a class of structured Low-Density Parity-Check (LDPC) codes, characterized by very simple encoding, that we have recently introduced. This paper evidences how the design of M-SC-MPC codes can be optimized for their usage in wireless applications. For such purpose, we consider some Quasi-Cyclic LDPC codes included in the mobile WiMax standard, and compare their performance with that of M-SCMPC codes having the same parameters. We also present a simple modification of the inner structure of M-SC-MPC codes that can help to improve their error correction performance by introducing irregularity in the parity-check matrix and increasing the length of local cycles in the associated Tanner graph. Our results show that regular and irregular M-SC-MPC codes, so obtained, can achieve very good performance and compare favorably with standard codes.