Micromechanical models of two-phase ceramic composites are created using a modified Voronoi tessellation approach. These representative Finite Volume (FV) microstructures are used to investigate the role of microstructure on fracture of advanced ceramics. An arbitrary crack propagation model using a cell-centred finite volume based method is implemented. In particular the effect of matrix content is examined. It is shown that the underlying microstructure significantly affects the local stress and strain distributions for a two-phase ceramic containing hard particles in a softer matrix. Simulation results indicate that an increase in the volume fraction of these hard grains leads to an increase in strength of the composite material. Furthermore, it is found that the homogeneity of the microstructure affects the overall strength.