Abstract:For the purpose of the sustainable development in the global semiconductor industry, emerging three-dimensional integrated circuit (3DIC) integration technologies have demonstrated their importance as potential candidates for extending the lifespan of Moore's Law. This study aimed to explore a technology selection process involving a three-stage fuzzy multicriteria decision-making (MCDM) approach to facilitate the effective assessment of emerging 3DIC integration technologies. The fuzzy Delphi method was first used to determine the important criteria. The fuzzy analytic hierarchy process (fuzzy AHP) was then adopted to derive the weights of the criteria. The fuzzy technique for order of preference by similarity to ideal solution (fuzzy TOPSIS) was finally deployed to rate the alternatives. Empirical results indicate that market potential, time-to-market, and heterogeneous integration are the top three decision criteria for the selection of 3DIC integration technologies. Furthermore, 2.5D through-silicon interposer (TSI) is of primary interest to the Taiwanese semiconductor industry, followed by 3DIC through-silicon via (TSV), 3D packaging, and 3D silicon TSV (Si TSV). The proposed three-stage fuzzy decision model may potentially assist industry practitioners and government policy-makers in directing research and development investments and allocating resources more strategically.