Drought stress is an important limiting factor in crop production. Arbuscular mycorrhizal fungi (AMF) enhance plant drought tolerance through antioxidant activities. However, the coordination of nonenzymatic antioxidants against drought remains unclear. Here, we investigated the AMF symbiosis in drought tolerance of Sorghum bicolor by increasing proline and reducing glutathione (GSH). Glomus mosseae inoculation increased grain yield, biochemical content, and bioactivities of millets. Under drought conditions, seedlings inoculated with G. mosseae had higher SOD, POD, CAT, PPO, proline, and GSH activities compared to noninoculated controls. Meanwhile, a lower accumulation of MDA and H 2 O 2 was observed in the G. mosseae seedlings. Furthermore, genes attributed to nonenzymatic antioxidants, such as GST29, P5CS2, FD3, GST, and GAD, were significantly upregulated by G. mosseae under drought conditions. In conclusion, G. mosseae inoculation enhanced the drought tolerance of S. bicolor by improving reactive oxygen species (ROS) scavengers, including proline and GSH, that regulate ROS production and prevent oxidative damage.