One of the key aspects in component-based design is specifying the software
architecture that characterizes the topology and the permissible interactions
of the components of a system. To achieve well-founded design there is need to
address both the qualitative and non-functional aspects of architectures. In
this paper we study the qualitative and quantitative formal modelling of
architectures applied on parametric component-based systems, that consist of an
unknown number of instances of each component. Specifically, we introduce an
extended propositional interaction logic and investigate its first-order level
which serves as a formal language for the interactions of parametric systems.
Our logics achieve to encode the execution order of interactions, which is a
main feature in several important architectures, as well as to model recursive
interactions. Moreover, we prove the decidability of equivalence,
satisfiability, and validity of first-order extended interaction logic
formulas, and provide several examples of formulas describing well-known
architectures. We show the robustness of our theory by effectively extending
our results for parametric weighted architectures. For this, we study the
weighted counterparts of our logics over a commutative semiring, and we apply
them for modelling the quantitative aspects of concrete architectures. Finally,
we prove that the equivalence problem of weighted first-order extended
interaction logic formulas is decidable in a large class of semirings, namely
the class (of subsemirings) of skew fields.