Binocular disparity, the difference between the two eyes' images, is a powerful cue to generate the three-dimensional depth percept known as stereopsis. In primates, binocular disparity is processed in multiple areas of the visual cortex, with distinct contributions of higher areas to specific aspects of depth perception. Mice, too, can perceive stereoscopic depth, and neurons in primary visual cortex (V1) and higher-order, lateromedial (LM) and rostrolateral (RL) areas were found to be sensitive to binocular disparity. A detailed characterization of disparity tuning properties across mouse visual areas is lacking, however, and acquiring such data might help clarifying the role of higher areas for disparity processing and establishing putative functional correspondences to primate areas. We used two-photon calcium imaging to characterize the disparity tuning properties of neurons in mouse visual areas V1, LM, and RL in response to dichoptically presented binocular gratings, as well as correlated and anticorrelated random dot stereograms (RDS). In all three areas, many neurons were tuned to disparity, showing strong response facilitation or suppression at optimal or null disparity, respectively. This was even the case in neurons classified as monocular by conventional ocular dominance measurements. Spatial clustering of similarly tuned neurons was observed at a scale of about 10 μm. Finally, we probed neurons' sensitivity to true stereo correspondence by comparing responses to correlated and anticorrelated RDS. Area LM, akin to primate ventral visual stream areas, showed higher selectivity for correlated stimuli and reduced anticorrelated responses, indicating higher-level disparity processing in LM compared to V1 and RL.