There is much evidence that pigment-epithelium-derived factor (PEDF) is a potent antiangiogenic cytokine which inhibits retinal and choroidal neovascularization by inducing apoptosis in activated vascular endothelial cells. Furthermore, the regulation of PEDF appears to be linked to the regulation of vascular endothelial growth factor (VEGF), one of the most potent inducers of intraocular neovascularization. Previous studies have established that thermal photocoagulation, the mainstay in the therapy of various neovascular diseases of the posterior segment, results in a decrease in intraocular concentrations of VEGF and other angiogenic growth factors, thereby inhibiting active retinal neovascularization. In the current study, we sought to determine whether thermal photocoagulation has the potential to regulate the expression of PEDF in human retinal pigment epithelial (RPE) cells. Cultures of RPE cells were photocoagulated with a 532-nm diode laser. Subsequently, RNA was isolated for RT-PCR, and whole-cell extracts and precipitated cell culture supernatant were subjected to Western blot analysis. According to our results, PEDF mRNA and protein are significantly upregulated after photocoagulation. Moreover, PEDF protein was found to be secreted in the cell culture medium.