[Ru(IV)(2,6-Cl2tpp)Cl2], prepared in 90 % yield from the reaction of [Ru(VI)(2,6-Cl2tpp)O2] with Me3SiCl and structurally characterized by X-ray crystallography, is markedly superior to [Ru(IV)(tmp)Cl2], [Ru(IV)(ttp)Cl2], and [Ru(II)(por)(CO)] (por=2,6-Cl2tpp, F20-tpp, F28-tpp) as a catalyst for alkene epoxidation with 2,6-Cl2pyNO (2,6-Cl2tpp=meso-tetrakis(2,6-dichlorophenyl)porphyrinato dianion; tmp=meso-tetramesitylporphyrinato dianion; ttp=meso-tetrakis(p-tolyl)porphyrinato dianion; F20-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion; F28-tpp=2,3,7,8,12,13,17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion). The "[Ru(IV)(2,6-Cl2tpp)Cl2]+2,6-Cl2pyNO" protocol oxidized, under acid-free conditions, a wide variety of hydrocarbons including 1) cycloalkenes, conjugated enynes, electron-deficient alkenes (to afford epoxides), 2) arenes (to afford quinones), and 3) Delta5-unsaturated steroids, Delta4-3-ketosteroids, and estratetraene derivatives (to afford epoxide/ketone derivatives of steroids) in up to 99 % product yield within several hours with up to 100 % substrate conversion and excellent regio- or diastereoselectivity. Catalyst [Ru(IV)(2,6-Cl2tpp)Cl2] is remarkably active and robust toward the above oxidation reactions, and turnover numbers of up to 6.4x10(3), 2.0x10(4), and 1.6x10(4) were obtained for the oxidation of alpha,beta-unsaturated ketones, arenes, and Delta5-unsaturated steroids, respectively.