A mammal's endometrium is deeply remodeled while receiving and implanting an embryo. In addition to cell proliferation and growth, endometrial remodeling also comprises synthesis and degradation of several molecular components of the extracellular matrix. All of these events are orchestrated by a precise sequence of ovarian hormones and influenced by several types of cytokines. As we have previously reported, an intriguing and rapid increase in collagen fibril diameter occurs in the decidualized areas of the endometrium, surrounding the implantation crypt, whereas collagen fibrils situated far from the embryo remain unchanged. Collagen fibrilogenesis is a complex molecular process coordinated by a number of factors, such as the types and amounts of glycosaminoglycans and proteoglycans associated with collagen molecules. Collagen genetic type, mechanical stress, aging, and other factors not yet identified also contribute to this development. A recent study suggests that thick fibrils from mouse decidua are formed, at least in part, by aggregation of thin fibrils existing in the stroma before the onset of decidualization. In the present ultrastructural study using single and double immunogold localization, we showed that both thin and thick collagen fibrils present in the mouse pregnant endometrium endometrium are heterotypic structures formed at least by type I, type III, and type V collagens. However, type V collagen predominates in the thick collagen fibrils, whereas it is almost absent of the thin collagen fibrils. The putative role of type V homotrimer in the rapid increase of the diameter of collagen fibrils of the mouse decidua is discussed.