The small, basic, and cysteine-rich antifungal protein PAF is abundantly secreted into the supernatant by the -lactam producer Penicillium chrysogenum. PAF inhibits the growth of various important plant and zoopathogenic filamentous fungi. Previous studies revealed the active internalization of the antifungal protein and the induction of multifactorial detrimental effects, which finally resulted in morphological changes and growth inhibition in target fungi. In the present study, we offer detailed insights into the mechanism of action of PAF and give evidence for the induction of a programmed cell death-like phenotype. We proved the hyperpolarization of the plasma membrane in PAF-treated Aspergillus nidulans hyphae by using the aminonaphtylethenylpyridinium dye di-8-ANEPPS. The exposure of phosphatidylserine on the surface of A. nidulans protoplasts by Annexin V staining and the detection of DNA strand breaks by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) gave evidence for a PAF-induced apoptotic-like mechanism in A. nidulans. The localization of reactive oxygen species (ROS) by dichlorodihydrofluorescein diacetate and the abnormal cellular ultrastructure analyzed by transmission electron microscopy suggested that ROS-elicited membrane damage and the disintegration of mitochondria played a major role in the cytotoxicity of PAF. Finally, the reduced PAF sensitivity of A. nidulans strain FGSC1053, which carries a dominant-interfering mutation in fadA, supported our assumption that G-protein signaling was involved in PAF-mediated toxicity.A large number of small, basic, cysteine-rich antimicrobial proteins are produced by organisms throughout all kingdoms. They display a great variety in their primary structure, in species specificity, and in the mechanism of action.Few ascomycetes secrete strongly related antifungal proteins, which do not show any sequence homology with other antimicrobial proteins, but most of these proteins exhibit structural similarities (46): a net positive charge and numerous cysteine residues that are involved in disulfide bond formation. These properties contribute to a compact tertiary structure and a high stability against environmental impact and finally support the model of a membrane-disturbing nature. The antifungal protein PAF from P. chrysogenum and AFP from A. giganteus are the two most intensively studied peptides in the group of antifungals from ascomycetes, but the information available on their exact mechanism of action is still rather limited (32,55,68,69). PAF inhibits the growth of various important plant pathogenic and zoopathogenic filamentous fungi, e.g., Aspergillus fumigatus, A. niger, A. nidulans, and Botrytis cinerea. Previous studies revealed the induction of multifactorial detrimental effects on target organisms that include growth inhibition, reduction of cellular metabolism, severe changes in hyphal morphology, increased K ϩ efflux, and the generation of intracellular reactive oxygen species (ROS) (32, 48). PAF was found to...