Trivalent and pentavalent arsenic were incubated with sulfur-containing amino acid, peptide and protein solutions both as organic compounds (phenylarsine oxide, phenylarsonic acid, dimethylarsinic acid, monomethylarsonic acid) and as inorganic compounds (arsenite, As(III), and arsenate, As(V)). After incubation of phenylarsine oxide solutions with cysteine and glutathione the mass spectra showed a covalent bond between arsenic and sulfur, which was stable at both acidic and neutral pH values. The mass spectra were dominated by monovalent ions at m/z 272 for cysteine samples and at m/z 458 for glutathione samples. Based on these masses the ionic structures could be ascribed to either fragment ions of the covalent arsenic-sulfur complexes or to other arsenic-bonding sites presumably at the amino group. Interestingly, under the same conditions no interactions of inorganic arsenite or arsenate could be measured. In the presence of added Cu(2+) ions all mass signals caused by a reaction of phenylarsine oxide with glutathione disappeared. In these mass spectra only the oxidised form of glutathione (GSSG) was found because of the redox activity of Cu(II). For the model protein lysozyme, no interactions with arsenic could be detected, whereas definite Cu- and Zn-lysozyme complexes with a stoichiometry of 1:1 and 2:1 for Zn(2+) ions and Cu(2+) ions, respectively, were observed. In contrast, for thioredoxin a bonding of As that depended on the concentration of the disulfide-reducing agent tris(2-carboxyethyl) phosphine was demonstrated. For three different phenylarsonic acids and for dimethylarsinic acid that all contain pentavalent arsenic, complexes with glutathione appeared in the mass spectra, which can be attributed to non-covalent interactions or to a covalent bond caused by an additive reaction. The optimisation of the experimental conditions necessary for the mass spectrometric analysis of the interactions of the arsenic species with peptides and proteins is described and the obtained mass spectra that provide information on the kinds of bonds are discussed.