It is the mature gametocytes of Plasmodium that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of Plasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC 50 s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of Plasmodium falciparum (ϳ3 to 5 females:1 male), current gametocyte assays without a sexspecific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.
Malaria is a disease of devastating economic and health burdens, with 216 million cases and 655,000 fatalities per year, among which most are either pregnant women or children of less than 5 years of age (1). The recent appreciation that local elimination and global eradication of malaria will require interventions that prevent parasite transmission from the human host to the vector (2) has revitalized the search for transmission-blocking drugs (3-7). One target of such drugs is the gametocyte, which is the parasite stage uniquely responsible for Plasmodium transmission to the mosquito.Plasmodium asexual parasites form gametocytes at a low frequency (0.2 to 1%) (8), with sexually committed merozoites from one precommitted schizont all forming gametocytes of the same sex (9). In Plasmodium falciparum, gametocytes develop over a period of 12 days, during which they are initially susceptible to schizonticidal antimalarials (stages I to III), but for the final part of their maturation process (stages IV and V), they become broadly insensitive to most antimalarial drugs, except for primaquine and methylene blue (6, 10-13). Mature stage V gametocytes, when considered as a single population, are developmentally arrested, and curr...