2021 International Conference on Advanced Technologies for Communications (ATC) 2021
DOI: 10.1109/atc52653.2021.9598303
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Cognition for Early Leaf Disease Detection using Vision Transformers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
17
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 50 publications
(18 citation statements)
references
References 21 publications
0
17
0
1
Order By: Relevance
“…El primer algoritmo se basa en el uso de un recurso tecnológico (robot) que permita la movilidad dentro de la finca con el fin de adquirir datos y una red neuronal para el monitoreo de la roya. Esto basado en el monitoreo los cultivos por medio de un robot como el utilizado por Wijanarko A. et al (2021) [15] y la aplicación de redes neuronales de detección de plagas como lo propone Thai et al, (2021) [75].…”
Section: Resultsunclassified
“…El primer algoritmo se basa en el uso de un recurso tecnológico (robot) que permita la movilidad dentro de la finca con el fin de adquirir datos y una red neuronal para el monitoreo de la roya. Esto basado en el monitoreo los cultivos por medio de un robot como el utilizado por Wijanarko A. et al (2021) [15] y la aplicación de redes neuronales de detección de plagas como lo propone Thai et al, (2021) [75].…”
Section: Resultsunclassified
“…In [151], the authors summarized the results of the challenger VisDrone-DET2021 in which the proponents used different transformers, such as Scaled-YOLOv4 with transformer and BiFPN (SOLOER), Swin-transformer (Swin-T), stronger visual information for tiny object detection (VistrongerDet), and EfficientDet for object detection in the drone imagery. Thai et al [152] demonstrated the use of ViT for cassava leaf disease classification and achieved better performance than did the CNNs. A detailed summary of the existing ViTs for drone imagery data is presented in Table 7.…”
Section: Vits and Drone Imagerymentioning
confidence: 99%
“…Furthermore, by employing the Vision Transformer, researchers achieved a minimum of 1% higher accuracy in classifying cassava leaf diseases than wellknown CNN models. They also effectively implemented this model on the Raspberry Pi 4, an edge device, showcasing the substantial potential for its application in the realm of smart agriculture [17]. To the best of our knowledge, only [19] has performed durian disease detection using deep learning approach.…”
Section: Related Workmentioning
confidence: 99%