Global container repositioning in liner shipping has always been a challenging problem in container transportation as the global market in maritime logistics is complex and competitive. Supply and demand are dynamic under the ever changing trade imbalance. A useful computation optimization tool to assist shipping liners on decision making and planning to reposition large quantities of empty containers from surplus countries to deficit regions in a cost effective manner is crucial. A novel immunity-based evolutionary algorithm known as immunity-based evolutionary algorithm (IMEA) is developed to solve the multi-objective container repositioning problems in this research. The algorithm adopts the clonal selection and immune suppression theories to attain the Pareto optimal front. The proposed algorithm was verified with benchmarking functions and compared with four optimization algorithms to assess its diversity and spread. The developed algorithm provides a useful means to solve the problem and assist shipping liners in the global container transportation operations in an optimized and cost effective manner.