An efficient method to address the multi-stage planning of open loop structured mv distribution networks under uncertainty, taking into account distributed generation connected to distribution system, has been proposed. The fuzzy model can cope with important features implicit in planning studies such as time-phased representation, consideration of conflicting objectives and uncertainty in loads, distributed generation and economic data. Using two evolutionary algorithms simultaneous optimization of costs and the reliability is achieved. Thus, in addition to optimal radial layout along several stages in time, the algorithm can determine the optimal locations of reserve feeders that achieve the best network reliability with the lowest expansion and operational costs. The model and evolutionary algorithms have been applied intensively to real life power distribution systems showing its potential applicability to significantly larger systems than those frequently found in literature about dynamic distribution networks planning. Results have illustrated the significant influence of the uncertainties in the optimal distribution network planning mainly in terms of topology and supply capacity of the resulting optimal distribution system.Index Terms--primary distribution network, planning, open loop network, evolutionary algorithm, dynamic model, uncertainty, robustness, fuzzy sets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.