Artificial intelligence (AI) simulates intelligent behavior using computers with minimum human intervention. Recent advances in AI, especially deep learning, have made significant progress in perceptual operations, enabling computers to convey and comprehend complicated input more accurately. Worldwide, fractures affect people of all ages and in all regions of the planet. One of the most prevalent causes of inaccurate diagnosis and medical lawsuits is overlooked fractures on radiographs taken in the emergency room, which can range from 2% to 9%. The workforce will soon be under a great deal of strain due to the growing demand for fracture detection on multiple imaging modalities. A dearth of radiologists worsens this rise in demand as a result of a delay in hiring and a significant percentage of radiologists close to retirement. Additionally, the process of interpreting diagnostic images can sometimes be challenging and tedious. Integrating orthopedic radio-diagnosis with AI presents a promising solution to these problems. There has recently been a noticeable rise in the application of deep learning techniques, namely convolutional neural networks (CNNs), in medical imaging. In the field of orthopedic trauma, CNNs are being documented to operate at the proficiency of expert orthopedic surgeons and radiologists in the identification and categorization of fractures. CNNs can analyze vast amounts of data at a rate that surpasses that of human observations. In this review, we discuss the use of deep learning methods in fracture detection and classification, the integration of AI with various imaging modalities, and the benefits and disadvantages of integrating AI with radio-diagnostics.