2019
DOI: 10.1002/jgc4.1192
|View full text |Cite
|
Sign up to set email alerts
|

Artificial intelligence in genetic services delivery: Utopia or apocalypse?

Abstract: Artificial intelligence (AI) technologies have a long history, with increasing presence and potential in society and medicine. Much of the medical literature is highly optimistic about AI and machine learning, but fears also exist that healthcare professionals will be replaced by machines. AI remains mysterious for many practitioners, so this paper aims to unwind both hype and fear related to the technology for genetics professionals. After an historical introduction to AI in understandable and practical terms… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 19 publications
(11 citation statements)
references
References 24 publications
0
8
0
3
Order By: Relevance
“…Kearney et al [56] describe the current applications of AI in genomics and genetic counseling and the potential for continued and increased integration of AI in genetics. Medical genetic testing is one of the major applications of machine learning and deep learning in genomics.…”
Section: Use Of Health Technologies and Patient Educational Toolsmentioning
confidence: 99%
“…Kearney et al [56] describe the current applications of AI in genomics and genetic counseling and the potential for continued and increased integration of AI in genetics. Medical genetic testing is one of the major applications of machine learning and deep learning in genomics.…”
Section: Use Of Health Technologies and Patient Educational Toolsmentioning
confidence: 99%
“…This is still widely used in medical genetics (e.g., in pedigree analysis and cancer risk modeling programs). Machine learning AI systems, however, are modeled based on large datasets and do not require as much human expertise on the interpretation of outputs (Kearney et al., 2020). Machine learning can be used to develop algorithms for genetic diagnostic testing (e.g., mapping a patient's family history against current guidelines for cancer risk assessment and genetic testing).…”
Section: Introductionmentioning
confidence: 99%
“…Az orvoslásban eddig alkalmazott mesterséges intelligencia korlátozott, strukturált és eredményesen használható, ahogy azt az orvosi szakirodalom is optimista módon írja le, bár mindig felvetődik egy kérdés, hogy hol a határ az egészségügyi ellátás dehumanizációja során [15,17,18]? Ha egy szakember ül szemben és beszélget a pácienssel, akkor az az érzelmi vetületét is érzékeli a tanácsadásnak, látja a fájdalmat, aggodalmat és kétségbeesést esetleg az elégedettséget is a páciensek részéről.…”
Section: Mesterséges Intelligencia a Genetikai Tanácsadásbanunclassified