Smartphones, artificial intelligence, automation, digital communication, and other types of technology are playing an increasingly important role in our daily lives. It is no surprise that technology is also shaping the practice of medicine, and more specifically the practice of genetic counseling. While digital tools have been part of the practice of medical genetics for decades, such as internet- or CD-ROM-based tools like Online Mendelian Inheritance in Man and Pictures of Standard Syndromes and Undiagnosed Malformations in the 1980s, the potential for emerging tools to change how we practice and the way patients consume information is startling. Technology has the potential to aid in at-risk patient identification, assist in generating a differential diagnosis, improve efficiency in medical history collection and risk assessment, provide educational support for patients, and streamline follow-up. Here we review the historic and current uses of technology in genetic counseling, identify challenges to integration, and propose future applications of technology that can shape the practice of genetic counseling.
As the demand for evidence to support the value of genetic counseling increases, it is critical that reporting of genetic counseling interventions in research and other types of studies (e.g. process improvement or service evaluation studies) adopt greater rigor. As in other areas of healthcare, the appraisal, synthesis, and translation of research findings into genetic counseling practice are likely to be improved if clear specifications of genetic counseling interventions are reported when studies involving genetic counseling are published. To help improve reporting practices, the National Society of Genetic Counselors (NSGC) convened a task force in 2015 to develop consensus standards for the reporting of genetic counseling interventions. Following review by the NSGC Board of Directors, the NSGC Practice Guidelines Committee and the editorial board of the Journal of Genetic Counseling, 23 items across 8 domains were proposed as standards for the reporting of genetic counseling interventions in the published literature (GCIRS: Genetic Counseling Intervention Reporting Standards). The authors recommend adoption of these standards by authors and journals when reporting studies involving genetic counseling interventions.
Artificial intelligence (AI) technologies have a long history, with increasing presence and potential in society and medicine. Much of the medical literature is highly optimistic about AI and machine learning, but fears also exist that healthcare professionals will be replaced by machines. AI remains mysterious for many practitioners, so this paper aims to unwind both hype and fear related to the technology for genetics professionals. After an historical introduction to AI in understandable and practical terms, we review its limitations. Building upon this foundation, we discuss current AI applications in medicine, including genomics and genetic counseling, offering grounded ideas about the impact and role of AI in genetic counseling and delivery of genetic services. Since AI is already being used in genomics today, now is the time to fundamentally understand what it is, how it is being used, what its limitations are, and how it will continue to be integrated into genetics as we look ahead.
Objectives The inclusion of clinical pharmacists in ward rounds (WRs) can reduce adverse drug events, improve communication and enable collaborative decision-making. The aim of this study is to investigate the level of and factors that influence WR participation by clinical pharmacists in Australia. Methods An online administered, anonymous survey of clinical pharmacists in Australia was conducted. The survey was open to pharmacists aged ≥18 years, who had worked in an Australian hospital in a clinical role in the previous two weeks. It was distributed via The Society of Hospital Pharmacists of Australia and on pharmacist-specific social media threads. Survey questions related to the extent of WR participation and factors that influence WR participation. Cross-tabulation analysis was conducted to determine whether there was an association between WR participation and factors that influence WR participation. Key findings Ninety-nine responses were included. The level of WR participation by clinical pharmacists in Australian hospitals was low, with only 26/67 (39%) pharmacists who had a WR in their clinical unit actually attending the WR in the previous 2 weeks. Factors that influenced WR participation included having recognition of the role of the clinical pharmacist within the WR team, support from pharmacy management and the broader interprofessional team, and having adequate time and expectation from pharmacy management and colleagues to participate in WRs. Conclusions This study highlights the need for ongoing interventions such as restructuring workflows and increasing the awareness of the role of a clinical pharmacist in WR to increase participation of pharmacists in this interprofessional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.