Supporting the decision-making process for the production of a 3D-printed hand exoskeleton within the Industry 4.0 and Industry 5.0 paradigms brings new concepts of manufacturing procedures for 3D-printed medical devices, including hand exoskeletons for clinical applications. The article focuses on current developments in the design and manufacturing of hand exoskeletons and their future directions from the point of view of implementation within the Industry 4.0 and Industry 5.0 paradigms and applications in practice. Despite numerous publications on the subject of hand exoskeletons, many have not yet entered production and clinical application. The results of research on hand exoskeletons to date indicate that they achieve good therapeutic effects not only in terms of motor control, but also in a broader context: ensuring independence and preventing secondary motor changes. This makes interdisciplinary research on hand exoskeletons a key study influencing the future lives of patients with hand function deficits and the further work of physiotherapists. The main aim of this article is to check in what direction hand exoskeletons can be developed from a modern economic perspective and how decision support systems can accelerate these processes based on a literature review, expert opinions, and a case study.