Covalent Organic Frameworks (COFs), an emerging class of crystalline porous materials,are proposed as anew type of support for grafting lanthanide ions (Ln 3+ )a nd employing these hybrid materials as ratiometric luminescent thermometers.ATpBpy-COF-prepared from 1,3,5-triformylphloroglucinol (Tp) and 2,2'-bipyridine-5,5'-diamine (Bpy) grafted with Eu/Tb and Dy acetylacetone (acac) complexes can be successfully used as al uminescent thermometer in the 10-360 K( Eu) and 280-440 K( Tb) ranges with good sensing properties (thermal sensitivity up to 1.403 %K À1 ,t emperature uncertainty dT < 1Kabove110 K). Forthe Eu/Tb systems,we observe an unusual and rarely reported behavior,t hat is,n o thermal quenching of the Tb 3+ emission, aresult of the absence of ion-to-ligand/host energy back-transfer.T he LnCOF materials proposed here could be anew class of materials employed for temperature-sensing applications following up on the wellknownluminescent metal-organic framework thermometers.
Hydrocephalus is a state in which the circulation of cerebrospinal fluid is disturbed. This fluid, produced within the brain at a constant rate, moves through internal cavities in it (ventricles), then exits through passages so that it may be absorbed by the surrounding membranes (meninges). Failure of fluid to move properly through these passages results in the distention of the passages and the ventricles. Ultimately, this distention causes large displacements and distortion of brain tissue as well as an increase of fluid in the extracellular space of the brain (edema). We use a two-phase model of fluid-saturated material to simulate the steady state of the hydrocephalic brain. Analytic solutions for the displacement of brain tissue and the distribution of edema for the annular regions of an idealized cylindrical geometry and small-strain theory are found. The solutions are used for a large-deformation analysis by superposition of the responses obtained for incrementally increasing loading. The effects of structural and hydraulic differences of white and gray brain matter, and the ependymal lining surrounding the ventricles, are examined. The results reproduce the characteristic steady-state distribution of edema seen in hydrocephalus, and are compared with experiment.
The aim of this paper is to determine the extent to which infrared (IR) thermal imaging may be used for skin burn depth evaluation. The analysis can be made on the basis of the development of a thermal model of the burned skin. Different methods such as the traditional clinical visual approach and the IR imaging modalities of static IR thermal imaging, active IR thermal imaging and active-dynamic IR thermal imaging (ADT) are analyzed from the point of view of skin burn depth diagnostics. In ADT, a new approach is proposed on the basis of parametric image synthesis. Calculation software is implemented for single-node and distributed systems. The properties of all the methods are verified in experiments using phantoms and subsequently in vivo with animals with a reference histopathological examination. The results indicate that it is possible to distinguish objectively and quantitatively burns which will heal spontaneously within three weeks of infliction and which should be treated conservatively from those which need surgery because they will not heal within this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.