Alzheimer's disease is a central nervous system disorder characterized by the presence of neurofibrillary tangles, neuritic plaques and dystrophic neurites in susceptible areas of the brain. Investigation of the mechanism and development of the disease has been hampered by the lack of an animal model and the inaccessibility of neural tissue during the illness. Deficits in odour detection and discrimination are among the signs of Alzheimer's and previous anatomical studies suggest that olfactory pathways may be involved early in the illness. Neurons in the olfactory epithelium, which are of central origin, are relatively accessible for biopsy and could be used as a source of living nerve cells for the study of Alzheimer's disease if they can be shown to have characteristics of this disease. As these neurons have the unusual property of arising from stem cells throughout the life of the organism, they are good candidates for the development of cell cultures or cell lines which may express the disorder from living patients. We report here that nasal epithelium tissue taken at autopsy shows unique pathological changes in morphology, distribution and immunoreactivity of neuronal structures in patients with Alzheimer's disease.
Hydrocephalus is a state in which the circulation of cerebrospinal fluid is disturbed. This fluid, produced within the brain at a constant rate, moves through internal cavities in it (ventricles), then exits through passages so that it may be absorbed by the surrounding membranes (meninges). Failure of fluid to move properly through these passages results in the distention of the passages and the ventricles. Ultimately, this distention causes large displacements and distortion of brain tissue as well as an increase of fluid in the extracellular space of the brain (edema). We use a two-phase model of fluid-saturated material to simulate the steady state of the hydrocephalic brain. Analytic solutions for the displacement of brain tissue and the distribution of edema for the annular regions of an idealized cylindrical geometry and small-strain theory are found. The solutions are used for a large-deformation analysis by superposition of the responses obtained for incrementally increasing loading. The effects of structural and hydraulic differences of white and gray brain matter, and the ependymal lining surrounding the ventricles, are examined. The results reproduce the characteristic steady-state distribution of edema seen in hydrocephalus, and are compared with experiment.
Brain biomechanics has been investigated for more than 30 years. In particular, finite element analyses and other powerful computational methods have long been used to provide quantitative results in the investigation of dynamic processes such as head trauma. Nevertheless, the potential of these methods to simulate and predict the outcome of quasi-static processes such as neurosurgical procedures and neuropathological processes has only recently been explored. Some inherent difficulties in modeling brain tissues, which have impeded progress, are discussed in this work. The behavior of viscoelastic and poroelastic constitutive models is compared in simple 1-D simulations using the ABAQUS finite element platform. In addition, the behaviors of quasi-static brain constitutive models that have recently been proposed are compared. We conclude that a compressible viscoelastic solid model may be the most appropriate for modeling neurosurgical procedures.
We conducted a detailed MRI study of posterior fossa structures in 13 autistic children, 10 without seizures and three with seizures, and 28 controls, 17 without seizures and 11 with seizures, using computer-assisted planimetry, and measured midsagittal areas of cerebellar vermal lobule group I-V, vermal lobule group VI-VII, the pons, and fourth ventricle height. There were no significant differences between autistic and control subjects in any of the four regions measured, or in the ratio of areas of vermal lobules VI-VII to I-V.
VNS appears to be an effective treatment for children with refractory epilepsy. Development of intractable cough in one patient in spite of device being turned off and recurrent infection-related removal in another are unusual complications. Polysomnography before implantation of VNS should be considered to identify patients with pre-existing OSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.