2021
DOI: 10.3390/ijgi10020099
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Neural Network Model Development to Predict Theft Types in Consideration of Environmental Factors

Abstract: Crime prediction research using AI has been actively conducted to predict potential crimes—generally, crime locations or time series flows. It is possible to predict these potential crimes in detail if crime characteristics, such as detailed techniques, targets, and environmental factors affecting the crime’s occurrence, are considered simultaneously. Therefore, this study aims to categorize theft by performing k-modes clustering using crime-related characteristics as variables and to propose an ANN model that… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 22 publications
0
1
0
1
Order By: Relevance
“…Por otra parte, estudios han utilizado los modelos de redes neuronales artificiales para predecir los tipos de robos considerando factores ambientales; sin embargo, explican que esto es posible solo si se integran las características y variables relacionadas con ese tipo de delito. Igualmente, resaltan la importancia de incursionar en áreas criminalísticas para proporcionar diversidad a los modelos de redes neuronales (Kwon et al, 2021), tal como se hizo en esta investigación.…”
Section: Discussionunclassified
“…Por otra parte, estudios han utilizado los modelos de redes neuronales artificiales para predecir los tipos de robos considerando factores ambientales; sin embargo, explican que esto es posible solo si se integran las características y variables relacionadas con ese tipo de delito. Igualmente, resaltan la importancia de incursionar en áreas criminalísticas para proporcionar diversidad a los modelos de redes neuronales (Kwon et al, 2021), tal como se hizo en esta investigación.…”
Section: Discussionunclassified
“…In recent years, spatial-temporal crime prediction technology has been rapidly developed. With deriving data that include the crime incidents number, population density, weather variables, etc., spatial-temporal patterns of assault, robbery, theft, or other types of crimes can be predicted with the help of machine learning (especially deep learning) and other methods [1][2][3][4][5][6][7][8]. It provides references and predictions about when and where the crime hotspot would be to the police in advance, so it contributes to crime prevention as well as better police resources allocations.…”
Section: Introductionmentioning
confidence: 99%