Crime prediction research using AI has been actively conducted to predict potential crimes—generally, crime locations or time series flows. It is possible to predict these potential crimes in detail if crime characteristics, such as detailed techniques, targets, and environmental factors affecting the crime’s occurrence, are considered simultaneously. Therefore, this study aims to categorize theft by performing k-modes clustering using crime-related characteristics as variables and to propose an ANN model that predicts the derived categorizations. As the prediction of theft types allows people to estimate the features of the possibly most frequent thefts in random areas in advance, it enables the efficient deployment of police and the most appropriate tactical measures. Dongjak District was selected as the target area for analysis; thefts in the district showed four types of clusters. Environmental factors, representative elements affecting theft occurrence, were used as input data for a prediction model, while the factors affecting each cluster were derived through multiple linear regression analysis. Based on the results, input variables were selected for the ANN model training per cluster, and the model was implemented to predict theft type based on environmental factors. This study is significant for providing diversity to prediction methods using ANN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.