2019
DOI: 10.5380/rf.v50i1.61764
|View full text |Cite
|
Sign up to set email alerts
|

ARTIFICIAL NEURAL NETWORKS AND MIXED-EFFECTS MODELING TO DESCRIBE THE STEM PROFILE OF Pinus taeda L.

Abstract: The aim of this study was to compare the effectiveness of artificial neural networks (ANNs) and mixed-effects models (MEMs) in describing the stem profile of Pinus taeda L., using sample data from 246 trees. First, three taper functions of different classes were adjusted: non-segmented, segmented, and variable-form. To adjust the models, the nonlinear regression technique (nls) was used. In the best performance equation for nls-adjusted diameter estimates, the nonlinear MEM (nlme) was applied at two levels, us… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
7
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(8 citation statements)
references
References 0 publications
0
7
0
1
Order By: Relevance
“…Ela é uma expressão em que o volume da madeira é apresentado como função de outras grandezas ou variáveis da árvore (normalmente o diâmetro a altura do peito e a altura) que podem ser medidas e estimadas por meio não destrutivo (Batista et al, 2014). Porém nos últimos anos, as equações volumétricas têm sido utilizadas em estudos comparativos juntamente com aplicações de ferramentas da inteligência artificial, haja vista os bons resultados obtidos em alguns trabalhos na ciência florestal, dada à sua flexibilidade no treinamento e modelagem das relações entre variáveis, capacidade de aprendizado de informações de um conjunto de dados e a generalização desse aprendizado para dados desconhecidos (Binoti et al 2016;Bonete et al, 2019;Abreu et al, 2020).…”
Section: Introductionunclassified
“…Ela é uma expressão em que o volume da madeira é apresentado como função de outras grandezas ou variáveis da árvore (normalmente o diâmetro a altura do peito e a altura) que podem ser medidas e estimadas por meio não destrutivo (Batista et al, 2014). Porém nos últimos anos, as equações volumétricas têm sido utilizadas em estudos comparativos juntamente com aplicações de ferramentas da inteligência artificial, haja vista os bons resultados obtidos em alguns trabalhos na ciência florestal, dada à sua flexibilidade no treinamento e modelagem das relações entre variáveis, capacidade de aprendizado de informações de um conjunto de dados e a generalização desse aprendizado para dados desconhecidos (Binoti et al 2016;Bonete et al, 2019;Abreu et al, 2020).…”
Section: Introductionunclassified
“…Machine learning algorithms are increasingly being used in species distribution and ecological niche modeling (Prasad et al 2006;Cutler et al 2007;Hannemann et al 2015;Liang et al 2016;Prasad 2018;Gobeyn et al 2019), forest resources (Stojanova et al 2010;Görgens et al 2015) and climate change studies (Thuille 2003;Bastin et al 2019), among others. To determine to what extent these "new" methodologies can contribute to improving our understanding and prediction capacity within the field of environmental sciences, comparative studies are required between those models that have been used historically and those fed by artificial intelligence algorithms (Özçelik et al 2013;Diamantopoulou et al 2015;Hill et al 2017;Bonete et al 2020). Yet, many machine learning algorithms have been developed in recent years, and each of them may be more or less appropriate depending on the specific tasks and research objectives (Thessen 2016).…”
Section: Introductionmentioning
confidence: 99%
“…This highlights the need for systematic studies allowing for discerning the most suitable methodology according to a given research objective and data. Although several studies have analysed the performance of different analytical approaches (Hill et al 2017;Bonete et al 2020;Mayfield et al 2020), existing ecological research addressing systematic assessments and comparisons of alternative modeling and predictive methods is scarce, making it difficult to provide clear methodological recommendations about the suitability of different approaches. Besides, in the field of environmental sciences, often, extrapolations in biophysically differentiated areas are required, which makes it necessary to take even more into account the data spatial dependencies.…”
Section: Introductionmentioning
confidence: 99%
“…Machine learning algorithms are increasingly being used in species distribution and ecological niche modelling (Prasad et al, 2006;Culter et al, 2007;Hannemann et al, 2015;Liang et al 2016;Prasad, 2018;Gobeyn et al, 2019), forest resources (Stojanova et al, 2010;Görgens et al, 2015) and climate change studies (Thuille, 2003;Bastin et al, 2019), among others. To determine to what extent these "new" methodologies can contribute to improving our understanding and prediction capacity within the field of environmental sciences, comparative studies are required between those models that have been used historically and those fed by artificial intelligence algorithms (Özçelik et al, 2013;Diamantopoulou et al, 2015;Hill et al, 2016;Bonete et al, 2020). Yet, many machine learning algorithms have been developed in recent years, and each of them may be more or less appropriate depending on the specific tasks and research objectives (Thessen, 2016).…”
Section: Introductionmentioning
confidence: 99%
“…This highlights the need for systematic studies allowing for discerning the most suitable methodology according to a given research objective and data. Although several studies have analysed the performance of different analytical approaches (Hill et al, 2016;Bonete et al, 2020;Mayfield et al, 2020), existing ecological research addressing systematic assessments and comparisons of alternative modelling and predictive methods is scarce, making it difficult to provide clear methodological recommendations about the suitability of different approaches. Besides, in the field of environmental sciences, often, extrapolations in biophysically differentiated areas are required, which makes it necessary to take even more into account the data spatial dependencies.…”
Section: Introductionmentioning
confidence: 99%