2022
DOI: 10.1021/acs.jchemed.1c01288
|View full text |Cite
|
Sign up to set email alerts
|

Artificial Neural Networks Applied to Colorimetric Nanosensors: An Undergraduate Experience Tailorable from Gold Nanoparticles Synthesis to Optical Spectroscopy and Machine Learning

Abstract: Nowadays, technologies involving nanoparticles, colloids, sensors, and artificial intelligence are widespread in society, media, and industry. It is thus mandatory to integrate them into the curricula of students enrolled in chemistry and materials science. To this purpose, we designed a simple assay for the detection of glutathione (GSH) using surface-clean gold nanoparticles (Au NPs). The alteration of the electric double layer of the Au NPs with increasing GSH concentration causes the particles to aggregate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
16
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 24 publications
(18 citation statements)
references
References 24 publications
0
16
0
2
Order By: Relevance
“…Technologies help facilitate learners’ access to and participation in learning resources that provide formative feedback . The development of this Shiny app based on our previous machine learning-based tool is a small start, adding to other machine learning-based resources to support the learning of chemistry topics. We have made our R code freely available so that others might use our code to translate other assessment instruments and prompts into practical tools for educators more easily . We should note that other researchers have also begun to develop tools such as dashboards to provide students and instructors with automated feedback; , this is yet another example of how such technologies can be used to transform and promote learning.…”
Section: Use Of the Shiny App In Instructional Practicementioning
confidence: 99%
“…Technologies help facilitate learners’ access to and participation in learning resources that provide formative feedback . The development of this Shiny app based on our previous machine learning-based tool is a small start, adding to other machine learning-based resources to support the learning of chemistry topics. We have made our R code freely available so that others might use our code to translate other assessment instruments and prompts into practical tools for educators more easily . We should note that other researchers have also begun to develop tools such as dashboards to provide students and instructors with automated feedback; , this is yet another example of how such technologies can be used to transform and promote learning.…”
Section: Use Of the Shiny App In Instructional Practicementioning
confidence: 99%
“…En este sentido, la educación universitaria de la química hace uso de las prácticas de laboratorio como un contexto privilegiado de enseñanza (Sánchez, 2017). La importancia de las prácticas se pone de manifiesto en la bibliografía, donde se han reportado experiencias de laboratorio puesto que permiten a los estudiantes aplicar y conectar diferentes conceptos químicos del área de química de materiales además de usar diversas técnicas de laboratorio e instrumentación (Todd, 2022), y el uso de nanopartículas como sensores (Revignas, 2022). Por tanto, la idea desarrollada en este proyecto para que el alumnado pueda preparar materiales porosos tipo MOF y nanopartículados basados en los diferentes conceptos del temario de la asignatura, se ha cumplido con éxito y como resultado se han podido elaborar dos prácticas de laboratorio innovadoras adecuadas a las habilidades y los conocimientos que se les exige a los estudiantes.…”
Section: Conclusionesunclassified
“…13 A number of authors have approached the subject of teaching machine learning via artificial neural networks. 14,15 However, the data sets that are required for training these networks need to be very reproducible to avoid the ANNs finding patterns in the data that do not exist. We therefore avoided the use of ANNs in this study, given the complex nature of the substrates that we planned to sample.…”
Section: ■ Introductionmentioning
confidence: 99%