Background: The first two studies of an artificial pancreas (AP) system carried out in Latin America took place in 2016 (phase 1) and 2017 (phase 2). They evaluated a hybrid algorithm from the University of Virginia (UVA) and the automatic regulation of glucose (ARG) algorithm in an inpatient setting using an AP platform developed by the UVA. The ARG algorithm does not require carbohydrate (CHO) counting and does not deliver meal priming insulin boluses. Here, the first outpatient trial of the ARG algorithm using an own AP platform and doubling the duration of previous phases is presented. Method: Phase 3 involved the evaluation of the ARG algorithm in five adult participants (n = 5) during 72 hours of closed-loop (CL) and 72 hours of open-loop (OL) control in an outpatient setting. This trial was performed with an own AP and remote monitoring platform developed from open-source resources, called InsuMate. The meals tested ranged its CHO content from 38 to 120 g and included challenging meals like pasta. Also, the participants performed mild exercise (3-5 km walks) daily. The clinical trial is registered in ClinicalTrials.gov with identifier: NCT04793165. Results: The ARG algorithm showed an improvement in the time in hyperglycemia (52.2% [16.3%] OL vs 48.0% [15.4%] CL), time in range (46.9% [15.6%] OL vs 50.9% [14.4%] CL), and mean glucose (188.9 [25.5] mg/dl OL vs 186.2 [24.7] mg/dl CL) compared with the OL therapy. No severe hyperglycemia or hypoglycemia episodes occurred during the trial. The InsuMate platform achieved an average of more than 95% of the time in CL. Conclusion: The results obtained demonstrated the feasibility of outpatient full CL regulation of glucose levels involving the ARG algorithm and the InsuMate platform.