Abstract. P-Rank (Penetrating Rank) has been suggested as a useful measure of structural similarity that takes account of both incoming and outgoing edges in ubiquitous networks. Existing work often utilizes memoization to compute PRank similarity in an iterative fashion, which requires cubic time in the worst case. Besides, previous methods mainly focus on the deterministic computation of P-Rank, but lack the probabilistic framework that scales well for large graphs. In this paper, we propose two efficient algorithms for computing P-Rank on large graphs. The first observation is that a large body of objects in a real graph usually share similar neighborhood structures. By merging such objects with an explicit low-rank factorization, we devise a deterministic algorithm to compute P-Rank in quadratic time. The second observation is that by converting the iterative form of P-Rank into a matrix power series form, we can leverage the random sampling approach to probabilistically compute P-Rank in linear time with provable accuracy guarantees. The empirical results on both real and synthetic datasets show that our approaches achieve high time efficiency with controlled error and outperform the baseline algorithms by at least one order of magnitude.