A range of novel two-dimensional materials have been actively explored for More Moore and More-than-Moore device applications because of their ability to form van der Waals heterostructures with unique electronic properties. However, most of the reported electronic devices exhibit insufficient control of multifunctional operations. Here, we leverage the band-structure alignment properties of narrow-bandgap black phosphorus and large-bandgap molybdenum disulfide to realize vertical heterostructures with an ultrahigh rectifying ratio approaching 10 and on-off ratio up to 10. Furthermore, we design and fabricate tunable multivalue inverters, in which the output logic state and window of the mid-logic can be controlled by specific pairs of channel length and, most importantly, by the electric field, which shifts the band-structure alignment across the heterojunction. Finally, high gains over 150 are achieved in the inverters with optimized device geometries, showing great potential for future logic applications.
Lung cancer is a highly heterogeneous disease. Cancer cells and cells within the tumor microenvironment together determine disease progression, as well as response to or escape from treatment. To map the cell type-specific transcriptome landscape of cancer cells and their tumor microenvironment in advanced non-small cell lung cancer (NSCLC), we analyze 42 tissue biopsy samples from stage III/IV NSCLC patients by single cell RNA sequencing and present the large scale, single cell resolution profiles of advanced NSCLCs. In addition to cell types described in previous single cell studies of early stage lung cancer, we are able to identify rare cell types in tumors such as follicular dendritic cells and T helper 17 cells. Tumors from different patients display large heterogeneity in cellular composition, chromosomal structure, developmental trajectory, intercellular signaling network and phenotype dominance. Our study also reveals a correlation of tumor heterogeneity with tumor associated neutrophils, which might help to shed light on their function in NSCLC.
An array of black-phosphorus photodetectors with channel lengths down to 100 nm is fabricated, and temperature-dependent photodetection measurements from 300 K down to 20 K are carried out. The devices show high photoresponse in a broadband spectral range with a record-high photoresponsivity of 4.3 × 10(6) A W(-1) at 300 K for the 100 nm device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.