Endochondral ossification is the result of chondrocyte differentiation, hypertrophy,
death and replacement by bone. The careful timing and progression of this process is
important for normal skeletal bone growth and development, as well as fracture
repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein
kinase (MAPK), which is activated by reactive oxygen species and other cellular
stress events. Activation of ASK1 initiates a signaling cascade known to regulate
diverse cellular events including cytokine and growth factor signaling, cell cycle
regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is
highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal
tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice
display alterations in normal growth plate morphology, which include a shorter
proliferative zone and a lengthened hypertrophic zone. These changes in growth plate
dynamics result in accelerated long bone mineralization and an increased formation of
trabecular bone, which can be attributed to an increased resistance of terminally
differentiated chondrocytes to undergo cell death. Interestingly, under normal cell
culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show
no differences in either MAPK signaling or osteogenic or chondrogenic differentiation
when compared with wild-type (WT) MEFs. However, when cultured with stress
activators, H2O2 or staurosporine, the KO cells show enhanced
survival, an associated decrease in the activation of proteins involved in death
signaling pathways and a reduction in markers of terminal differentiation.
Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO
mice endochondral bone formation was increased in an ectopic ossification model.
These findings highlight a previously unrealized role for ASK1 in regulating
endochondral bone formation. Inhibition of ASK1 has clinical potential to treat
fractures or to slow osteoarthritic progression by enhancing chondrocyte survival and
slowing hypertrophy.