Solar irradiation is one of the important parameters that should be taken into consideration for the design and utilization of a photovoltaic system. Usually, the input parameters of a photovoltaic system are solar irradiation, the ambient environment temperature and the wind speed, and as a consequence most photovoltaic systems are equipped with sensors for measuring these parameters. This paper presents several mathematical models for solar irradiation assessment. The starting point is represented by the mathematical model of extraterrestrial irradiation, and resulting finally in the model for solar irradiation, absorbed by a low concentration photovoltaic panel. These estimating models of solar irradiation have been particularized for the Craiova, Romania, and have been verified through numerical simulation. Regarding terrestrial solar irradiation, four mathematical models have been adopted, namely Adnot, Haurwitz, Kasten and Empirical (EIM). Of these, the most appropriate for the Craiova location were the models Adnot and Empirical. Consequently, for the calculation of the solar irradiation absorbed by the photovoltaic (PV) panels with low concentration, these models have been taken into consideration. In this study, a comparative analysis was also carried out with respect to the solar irradiation absorbed by the PV panels without concentration and those with collectedness of the solar radiation. This analysis was based on the results of numerical simulation and experimental tests.
OPEN ACCESSSustainability 2015, 7 2645