Background: Assembly factor for spindle microtubules (ASPM) has gained significant attention in cancer research due to its association with tumor growth and progression. Through the analysis of large-scale genomic datasets, ASPM has been identified as the top upregulated gene in breast cancer (BC), characterized by high proliferation. This multicohort study aimed to investigate the clinicopathological and prognostic significance of ASPM mRNA and protein expression in BC. Methods: ASPM mRNA expression was assessed using the Cancer Genome Atlas (TCGA) BC cohort and has been further validated in the Molecular Taxonomy of BC International Consortium (METABRIC) (n = 1980), The Uppsala cohort (n = 249), in addition to the combined multicentric cohort (n = 7252). ASPM protein expression was evaluated in a large BC cohort (n = 1300) using immunohistochemistry. The correlations between ASPM expression, clinicopathological parameters, molecular subtypes and outcome were assessed. The response to taxane treatment was compared to the clinical prognosis of ASPM using the ROC plotter. Results: High ASPM mRNA and protein expression were significantly associated with aggressive BC features and poor survival across all cohorts. The association with poor outcomes was maintained in the adjuvant chemotherapy and radio-therapy-treated patients. Responders to taxane treatment showed significantly elevated ASPM levels compared to non-responders. Conclusions: High ASPM expression predicts poor prognosis in BC. It may play a role in treatment resistance within a specific subgroup of patients. Further clinical trials are warranted to explore the potential of ASPM as a target for therapeutic interventions in cancer.