Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.
Despite the importance of cilia in cell signaling and motility, the molecular mechanisms regulating cilium formation remain incompletely understood. Herein, we characterize enkurin domaincontaining protein 1 (ENKD1) as a novel centrosomal protein that mediates the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole to promote ciliogenesis. We show that Enkd1 knockout mice possess ciliogenesis defects in multiple organs. Super-resolution microscopy reveals that ENKD1 is a stable component of the centrosome throughout the ciliogenesis process. Simultaneous knockdown of ENKD1 and CP110 significantly reverses the ciliogenesis defects induced by ENKD1 depletion. Protein interaction analysis shows that ENKD1 competes with centrosomal protein 97 (CEP97) in binding to CP110. Depletion of ENKD1 enhances the CP110-CEP97 interaction and detains CP110 at the mother centriole. These findings thus identify ENKD1 as a centrosomal protein and uncover a novel mechanism controlling CP110 removal from the mother centriole for the initiation of ciliogenesis.
Stratification of the epidermis is essential for the barrier function of the skin. However, the molecular mechanisms governing epidermal stratification are not fully understood. Herein, we demonstrate that enkurin domain-containing protein 1 (ENKD1) contributes to epidermal stratification by modulating the cell-division orientation of basal keratinocytes. The epidermis of Enkd1 knockout mice is thinner than that of wild-type mice due to reduced generation of suprabasal cells from basal keratinocytes through asymmetric division. Depletion of ENKD1 impairs proper orientation of the mitotic spindle and delays mitotic progression in cultured cells. Mechanistic investigation further reveals that ENKD1 is a novel microtubule-binding protein that promotes the stability of astral microtubules. Introduction of the microtubule-binding domain of ENKD1 can largely rescue the spindle orientation defects in ENKD1-depleted cells. These findings establish ENKD1 as a critical regulator of astral microtubule stability and spindle orientation that stimulates epidermal stratification in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.