Abstract. The Brazilian electricity mix is currently dominated by renewable energy forms, foremost hydropower. Large additional capacity demands are expected in the mid-term future but additional potential for hydro power is limited. In addition it is planned to construct more than 17 GW of wind power and additional capacity of photovoltaics (PV). Due to the fluctuating nature of such renewables, however, wind and PV are hardly able to provide firm capacity. Concentrated solar power (CSP) might be a feasible option to provide firm and dispatchable capacity at low carbon emissions. This study analyses the opportunities for integrating CSP into the Brazilian energy system. Making use of the TiPS-B model, a novel application of the optimization model generator TIMES, we compare different climate protection strategies with a reference scenario and analyze the contribution of CSP to the electricity mix. The analysis covers various types of CSP power plants with molten salt energy storage where we look at possible dispatch strategies considering the fluctuations in electricity supply and use. The consideration of solar water heaters (SWH) is the first step to transfer the power system model to an energy system model that is capable of showing the benefits of energy saving measures on the demand side. It can be demonstrated that the Brazilian power system is likely to change significantly in future. This development would go hand in hand with a strong increase in carbon emissions if no mitigation actions are taken and fossil fueled power plants are used to fill the gap in capacity. CSP power plants are found as a feasible alternative for covering the demand while taking carbon mitigation actions. In a scenario, aiming at 4 and 2 degrees global warming, CSP provides for 7.6 GW and 14.6 GW capacity in 2050, respectively. Different storage configurations are used to provide energy in the evening hours to cover the demand peak providing a strong benefit over photovoltaic electricity generation without an energy storage option. The use of SWH results in a 35 GW (2d SWH scenario) and 25 GW (2d CSP SWH scenario) lower demand for power capacity in that year