Low-impact development (LID) structures are combined with traditional measures to manage stormwater and cope with increased runoff rates originating from heavy urbanization and climate change. As the use of LIDs for climate adaptation increases, practitioners need more knowledge on LID performance in future climates for successful planning and implementation. In this study, temporal downscaling of regional climate projections for three cities in Norway is performed, using the concept of scale invariance to downscale the distribution of extreme precipitation from daily to sub-daily timescales. From this, local-scale intensity-duration-frequency (IDF) curves for future precipitation were obtained. Using climate projections of daily temporal resolution as input to water balance models and the obtained IDF relationships as input to event-based models allowed for assessing the retention capacity, peak flow reduction potential and pollution control of three different types of LIDs: green roofs, bioretention cells, and detention basins. The downscaling resulted in large local variations in presumed increase of both precipitation amount and intensity, contradicting current design recommendations in Norway. Countrywide, a decrease in the overall LID performance was found, although some positive effects of temperature rises were detected. The study illustrated the importance of evapotranspiration- and infiltration-based processes in future stormwater management and how coupling of LID structures in series can significantly reduce required detention volumes.