Low-impact development (LID) structures are combined with traditional measures to manage stormwater and cope with increased runoff rates originating from heavy urbanization and climate change. As the use of LIDs for climate adaptation increases, practitioners need more knowledge on LID performance in future climates for successful planning and implementation. In this study, temporal downscaling of regional climate projections for three cities in Norway is performed, using the concept of scale invariance to downscale the distribution of extreme precipitation from daily to sub-daily timescales. From this, local-scale intensity-duration-frequency (IDF) curves for future precipitation were obtained. Using climate projections of daily temporal resolution as input to water balance models and the obtained IDF relationships as input to event-based models allowed for assessing the retention capacity, peak flow reduction potential and pollution control of three different types of LIDs: green roofs, bioretention cells, and detention basins. The downscaling resulted in large local variations in presumed increase of both precipitation amount and intensity, contradicting current design recommendations in Norway. Countrywide, a decrease in the overall LID performance was found, although some positive effects of temperature rises were detected. The study illustrated the importance of evapotranspiration- and infiltration-based processes in future stormwater management and how coupling of LID structures in series can significantly reduce required detention volumes.
Climate change is likely to cause higher temperatures and alterations in precipitation patterns, with potential impacts on water resources. One important issue in this respect is inflow to drinking water reservoirs. Moreover, deteriorating infrastructures cause leakage in water distribution systems and urbanization augments water demand in cities. In this paper, a framework for assessing the combined impacts of multiple trends on water availability is proposed. The approach is focused on treating uncertainty in local climate projections in order to be of practical use to water suppliers and decision makers. An index for water availability (WAI) is introduced to quantify impacts of climate change, population growth, and ageing infrastructure, as well as the effects of implementing counteractive measures, and has been applied to the city of Bergen, Norway. Results of the study emphasize the importance of considering a range of climate scenarios due to the wide spread in global projections. For the specific case of Bergen, substantial alterations in the hydrological cycle were projected, leading to stronger seasonal variations and a more unpredictable water availability.By sensitivity analysis of the WAI, it was demonstrated how two adaptive measures, increased storage capacity and leakage reduction, can help counteract the impacts of climate change.
Climate change is expected to lead to higher precipitation amounts and intensities causing an increase of the risk for flooding and combined sewer overflows in urban areas. To cope with these changes, water managers are requesting practical tools that can facilitate adaptive planning. This study was carried out to investigate how recent developments in downscaling techniques can be used to assess the effects of adaptive measures. A combined spatial-temporal downscaling methodology using the Statistical DownScaling Model-Decision Centric and the Generalized ExtremeValue distribution was applied to project future precipitation in the city of Bergen, Norway.A raingarden was considered a potential adaptive measure and its performance was assessed using the RECARGA simulation tool. The benefits and limitations of using the proposed method has been demonstrated and compared to current design practices in Norway. Large differences in the raingarden's performance with respect to percentage overflow and lag-time reduction was found for varying projections. This highlights the need for working with a range of possible futures. Further, it was found that K sat was the determining factor for peak-flow reduction and that different values of K sat had different benefits. Engineering flexible solutions by combining measures holding different characteristics will induce robust adaptation.
This chapter comparatively analyses the policy and governance contexts of six European regions that are affected by different hydrological impacts of climate change. The results demonstrate that a major governance strength across regions lies in the organization of management capacities to deal with existing water-related risks. For example, the Dutch context focuses on water safety, Cyprus has a clear policy framework to deal with water scarcity and in the Norwegian city of Bergen, wastewater is well managed. As a consequence of this focus on present-day risks, climate adaptation governance also focuses on historical risks. New or exacerbated risks posed by climate change remain largely untreated, and responsibilities for dealing with climate-related risks remain unspecified, as also becomes clear in the German and Spanish cases. A high degree of governmental fragmentation is identified as another point of weakness. Identified most clearly in the Portuguese case but recognizable in all regional contexts, different subdomains of water management are dealt with under separate policies and are governed by different responsible agencies. Consequently, information about current performance of the water system is scattered and coordinative efforts, which are key to developing adaptation strategies, are hampered.
Abstract. Climate change is one of the greatest threats currently facing the world's environment. In Norway, a change in climate will strongly affect the pattern, frequency, and magnitudes of stream flows. However, it is challenging to quantify to what extent the change will affect the flow patterns and floods from small rural catchments due to the unavailability or inadequacy of hydro-meteorological data for the calibration of hydrological models and due to the tailoring of methods to a small-scale level. To provide meaningful climate impact studies at the level of small catchments, it is therefore beneficial to use high-spatial- and high-temporal-resolution climate projections as input to a high-resolution hydrological model. In this study, we used such a model chain to assess the impacts of climate change on the flow patterns and frequency of floods in small ungauged rural catchments in western Norway. We used a new high-resolution regional climate projection, with improved performance regarding the precipitation distribution, and a regionalized hydrological model (distance distribution dynamics) between a reference period (1981–2011) and a future period (2070–2100). The flow-duration curves for all study catchments show more wet periods in the future than during the reference period. The results also show that in the future period, the mean annual flow increases by 16 % to 33 %. The mean annual maximum floods increase by 29 % to 38 %, and floods of 2- to 200-year return periods increase by 16 % to 43 %. The results are based on the RCP8.5 scenario from a single climate model simulation tailored to the Bergen region in western Norway, and the results should be interpreted in this context. The results should therefore be seen in consideration of other scenarios for the region to address the uncertainty. Nevertheless, the study increases our knowledge and understanding of the hydrological impacts of climate change on small catchments in the Bergen area in the western part of Norway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.