This study reports the type IV fracture process and the influence of multiaxial stress state in ASME T92 welded joints during creep. The type IV fracture occurs at the fine‐grained heat‐affected zone (ie, FGHAZ), involving void initiation, growth, and coalescence, microcrack occurrence, propagation and extension, and eventual macrocrack with consequent joint failure. The creep damage is not uniformly distributed along the thickness direction in the FGHAZ, and the central part of the welded joint is the most seriously damaged region. The equivalent creep strain is higher at the external surface, but the stress triaxiality is larger in the centre section. Large equivalent creep strain could promote creep void initiation, whereas high hydrostatic pressure and stress triaxiality factor accelerate void growth in the FGHAZ of T92 joints. Besides, reducing groove angle and HAZ width of the joints is recommended to delay the occurrence of type IV cracking because of lower equivalent creep strain and stress triaxiality factor.