Abstract:In Lesotho, snow cover is not only highly relevant to the climate system, but also affects socio-economic factors such as water storage for irrigation or hydro-electricity. However, while sound knowledge of annual and inter-annual snow dynamics is strongly required by local stakeholders, in-situ snow information remains limited. In this study, satellite data are used to generate a time series of snow cover and to provide the missing information on a national scale. A snow retrieval method, which is based on MODIS data and considers the concept of a normalized difference snow index (NDSI), has been implemented. Monitoring gaps due to cloud cover are filled by temporal and spatial post-processing. The comparison is based on the use of clear sky reference images from Landsat-TM and ENVISAT-MERIS. While the snow product is considered to be of good quality (mean accuracy: 68%), a slight bias towards snow underestimation is observed. Based on the daily product, a consistent time series of snow cover for Lesotho from 2000-2014 was generated for the first time. Analysis of the time series showed that the high annual variability of snow coverage and the short duration of single snow events require daily monitoring with a gap-filling procedure.