Se propone un método usando Redes Neuronales Recurrentes para la predicción de datos caóticos, aplicando la Teoría del Caos, para estudiar el comportamiento dinámico de los datos en el espacio multidimensional de las fases, establecer la correlación de los mismos y determinar la dimensión de encaje como base para el entrenamiento de las redes neuronales, así como determinar las características dinámicas del sistema calculando los coeficientes de Lyapunov y la entropía de Kolmorov-Siani, que nos indican el grado de desorden que tiene el sistema, para proyectar la precisión de la predicción. Se usan datos de contaminantes PM2.5 tomados en el centro Histórico de la ciudad de Quito, en intervalos de una hora, entre los años 2005 a 2019. Los resultados determinan que las series de datos corresponden a un sistema caótico (más de un coeficiente positivo de Lyapunov), por lo que se justifica la aplicación de la Teoría del Caos en el análisis de los mismos, dando buenos resultados en las predicciones aplicando los métodos de redes neuronales recurrentes de Elman y Jordan, al comparar las series predichas se demuestran que no presentan diferencias significativas entre ellas, ni con los datos medidos, usando el método de varianza con 0,05 de significancia, el error cuadrático porcentual respecto al rango de variación de los datos es aproximadamente del 5 % en ambos casos. Objetivos: Proponer un método que ayude al entrenamiento de las redes neuronales usando la Teoría del caos, mediante la implementación de la dimensión de encaje en el espacio de las fases.