2022
DOI: 10.1515/auto-2021-0118
|View full text |Cite
|
Sign up to set email alerts
|

Assessment of reinforcement learning applications for industrial control based on complexity measures

Abstract: Machine learning and particularly reinforcement learning methods may be applied to control tasks ranging from single control loops to the operation of whole production plants. However, their utilization in industrial contexts lacks understandability and requires suitable levels of operability and maintainability. In order to asses different application scenarios a simple measure for their complexity is proposed and evaluated on four examples in a simulated palette transport system of a cold rolling mill. The m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?