Extreme weather events, such as typhoons, have occurred more frequently in the last few decades in the Philippines. The heavy precipitation caused by typhoons is difficult to measure with traditional instruments, such as rain gauges and ground-based radar, because these instruments have an uneven distribution in remote areas. Satellite precipitation datasets (SPDs) provide integrated spatial coverage of rainfall measurements, even for remote areas. This study performed subdaily (3-hour) assessments of SPDs (i.e., the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement [IMERG], Global Satellite Mapping of Precipitation [GSMaP], and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks datasets) during five typhoon-related heavy precipitation events in the Philippines between 2016 and 2018. The aforementioned assessments were performed through a point-to-grid comparison by using continuous and volumetric statistical validation indices for the 34-knot wind radii of the typhoons, rainfall intensity, the terrain, and wind velocity effects. The results revealed that the IMERG exhibited good agreement with rain gauge measurements and exhibited high performance in detecting rainfall during five typhoon events, whereas the GSMaP exhibited high agreement during peak rainfall. All the SPDs tended to overestimate rainfall during light to moderate rainfall events and underestimate rainfall during heavy to extreme events. The IMERG exhibited a strong ability to detect moderate rainfall events (5–15 mm/3 hours), whereas the GSMaP exhibited superior performance in detecting heavy to extreme rainfall events (15–25, 25–50, and >50 mm/3 hours). The GSMaP exhibited the best performance for detecting heavy rainfall at high elevations, whereas the IMERG exhibited the best performance for rainfall detection at low elevations. The IMERG exhibited a strong ability to detect heavy rainfall under various wind speeds. A strong ability to detect heavy rainfall events for different wind speeds in the western and eastern parts of the mountainous region of Luzon were found for the GSMap and IMERG, respectively. This study demonstrated that the IMERG and GSMaP datasets exhibit promising performance in detecting heavy precipitation caused by typhoon events.