During machining, unstable self-excited vibrations known as regenerative chatter can occur, causing excessive tool wear or failure, and a poor surface finish on the machined workpiece.Consequently it is desirable to predict, and hence avoid the onset of this instability. Regenerative chatter is a function of empirical cutting coefficients, and the structural dynamics of the machine-tool system. There can be significant uncertainties in the underlying parameters, so the predicted stability limits do not necessarily agree with those found in practice.In the present study, fuzzy arithmetic techniques are applied to the chatter stability problem. It is first shown that techniques based upon interval arithmetic are not suitable for this problem due to the issue of recursiveness. An implementation of fuzzy arithmetic is then developed based upon the work of Hanss and Klimke. The arithmetic is then applied to two techniques for predicting milling chatter stability: the classical approach of Altintas, and the time-finite element method of Mann. It is shown that for some cases careful programming can reduce the computational effort to acceptable levels. The problem of milling chatter uncertainty is then considered within the framework of Ben-Haim's information-gap theory.It is shown that the presented approach can be used to solve process design problems with robustness to the uncertain parameters. The fuzzy stability bounds are then compared to previously published data, to investigate how uncertainty propagation techniques can offer more insight into the accuracy of chatter predictions.