The modelling of livestock movements within Australia is of national importance for the purposes of the management and control of exotic disease spread, infrastructure development and the economic forecasting of livestock markets. In this paper an agent based model for the forecasting of livestock movements is presented. This models livestock movements from farm to farm through a saleyard. The decision of farmers to sell or buy cattle is often complex and involves many factors such as climate forecast, commodity prices, the type of farm enterprise, the number of animals available and associated off-shore effects. In this model the farm agent's intelligence is implemented using a fuzzy decision tree that utilises two of these factors. These two factors are the livestock price fetched at the last sale and the number of stock on the farm. On each iteration of the model farms choose either to buy, sell or abstain from the market thus creating an artificial supply and demand. The buyers and sellers then congregate at the saleyard where livestock are auctioned using a second price sealed bid. The price time series output by the model exhibits properties similar to those found in real livestock markets.