Increasing evidence exists for an association between early life fine particulate matter (PM2.5) exposure and several neurodevelopmental outcomes, including autism spectrum disorder (ASD); however, the association between PM2.5 and adaptive and cognitive function remains poorly understood. Participants included 658 children with ASD, 771 with a non-ASD developmental disorder, and 849 population controls from the Study to Explore Early Development. Adaptive functioning was assessed in ASD cases using the Vineland Adaptive Behavior Scales (VABS); cognitive functioning was assessed in all groups using the Mullen Scales of Early Learning (MSEL). A satellite-based model was used to assign PM2.5 exposure averages during pregnancy, each trimester, and the first year of life. Linear regression was used to estimate beta coefficients and 95% confidence intervals, adjusting for maternal age, education, prenatal tobacco use, race-ethnicity, study site, and season of birth. PM2.5 exposure was associated with poorer VABS scores for several domains, including daily living skills and socialization. Associations were present between prenatal PM2.5 and lower MSEL scores for all groups combined; results were most prominent for population controls in stratified analyses. These data suggest that early life PM2.5 exposure is associated with specific aspects of cognitive and adaptive functioning in children with and without ASD.