Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone's central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1.
IntroductionThyroid hormone is a well-known regulator of cardiovascular function and metabolic rate (1, 2). Hyperthyroid patients display increased metabolic rate and weight loss, despite increased food intake, as well as a profound tachycardia (2). Conversely, hypothyroid patients often suffer from weight gain and bradycardia (3). While most of the cardiovascular and metabolic effects of thyroid hormone have been attributed to direct actions in the corresponding peripheral tissues, such as heart (4) or skeletal muscle and fat (5, 6), recent studies have demonstrated that the hormone modulates these processes also through the brain (7): injections of thyroid hormone into different brain regions stimulate energy expenditure (8), and thyroid hormone signaling is required to establish the metabolic set point during embryonal development (9, 10).Similarly, thyroid hormone signaling is needed for the central modulation of heart rate. Mice that are heterozygous for a point mutation in thyroid hormone receptor α1 (Thra1 +/m ), which reduces the affinity to the ligand 10 fold (11), were unable to mount a correct cardiovascular response to stress, activity, or changes in environmental temperature due to a defective autonomous nervous system (12). While progress has been made in unraveling the molecular mechanisms of action of thyroid hormone in the central metabolic control and the identification of the underlying neuroanatomical areas (13), little is known about the anatomical substrates that mediate the effects of thyroid hormone on cardiovascular function.Here, we show that Thra1 +/m mice exhibit fewer parvalbuminergic neurons in a previously unknown population in the ant...