Background Metabolic syndrome and hyperinsulinemia are associated with hyperuricemia. Insulin infusion in healthy volunteers elevates serum urate (SU) by activating net urate reabsorption in the renal proximal tubule, whereas IGF-1 infusion reduces SU by mechanisms unknown. Variation within the IGF1R gene also affects SU levels.Methods Colocalization analyses of a SU genome-wide association studies signal at IGF1R and expression quantitative trait loci signals in cis using COLOC2, RT-PCR, Western blotting, and urate transport assays in transfected HEK 293T cells and in Xenopus laevis oocytes.Results Genetic association at IGF1R with SU is stronger in women and is mediated by control of IGF1R expression. Inheritance of the urate-lowering homozygous genotype at the SLC2A9 locus is associated with a differential effect of IGF1R genotype between men and women. IGF-1, through IGF-1R, stimulated urate uptake in human renal proximal tubule epithelial cells and transfected HEK 293T cells, through activation of IRS1, PI3/Akt, MEK/ERK, and p38 MAPK; urate uptake was inhibited in the presence of uricosuric drugs, specific inhibitors of protein tyrosine kinase, PI3 kinase (PI3K), ERK, and p38 MAPK. In X. laevis oocytes expressing ten individual urate transporters, IGF-1 through endogenous IGF-1R stimulated urate transport mediated by GLUT9, OAT1, OAT3, ABCG2, and ABCC4 and inhibited insulin's stimulatory action on GLUT9a and OAT3. IGF-1 significantly activated Akt and ERK. Specific inhibitors of PI3K, ERK, and PKC significantly affected IGF-1 stimulation of urate transport in oocytes.
ConclusionsThe combined results of infusion, genetics, and transport experiments suggest that IGF-1 reduces SU by activating urate secretory transporters and inhibiting insulin's action.