This study aimed to determine the body composition profile of candidates applying for a Physical Education and Sports major. 327 young adults (F: 87, M: 240) participated in this cross-sectional study. Nutritional status and body composition analysis were performed, and the profiles were generated using an unsupervised machine learning algorithm. Body mass index (BMI), percentage of fat mass (%FM), percentage of muscle mass (%MM), metabolic age (MA), basal metabolic rate (BMR), and visceral fat level (VFL) were used as input variables. BMI values were normal-weight although VFL was significantly higher in men (<0.001; η2 = 0.104). MA was positively correlated with BMR (0.81 [0.77, 0.85]; p < 0.01), BMI (0.87 [0.84, 0.90]; p < 0.01), and VFL (0.77 [0.72, 0.81]; p < 0.01). The hierarchical clustering analysis revealed two significantly different age-independent profiles: Cluster 1 (n = 265), applicants of both sexes that were shorter, lighter, with lower adiposity and higher lean mass; and, Cluster 2 (n = 62), a group of overweight male applicants with higher VFL, taller, with lower %MM and estimated energy expended at rest. We identified two profiles that might help universities, counselors and teachers/lecturers to identify applicants in which is necessary to increase physical activity levels and improve dietary habits.