SOCS proteins in regulation of receptor tyrosine kinase signaling.Uddin, Kazi; Kabir, Nuzhat N; Flores-Morales, Amilcar; Rönnstrand, Lars Link to publication Citation for published version (APA): Kazi, J. U., Kabir, N. N., Flores-Morales, A., & Rönnstrand, L. (2014). SOCS proteins in regulation of receptor tyrosine kinase signaling. Cellular and Molecular Life Sciences, 71(17), 3297-3310. DOI: 10.1007/s00018-014-1619-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
AbstractThe receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many of this family of kinases are overexpressed or mutated in human malignancies and thus became attractive drug target for cancer treatment. The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressor of cytokine signaling (SOCS) family proteins are well known negative regulators of cytokine receptors signaling consisting of eight structurally similar proteins, SOCS1-7 and CIS. A key feature of this family of proteins is the presence of an SH2 domain and a SOCS box. Recent studies suggest that SOCS proteins also play a role in RTK signaling. Activation of RTK results in transcriptional activation of SOCS encoding genes. These proteins associate with RTKs through their SH2 domains and subsequently recruit the E3 ubiquitin machinery through the SOCS box, and thereby limit receptor stability by inducing ubiquitination. In a similar fashion SOCS proteins negatively regulate mitogenic signaling by RTKs. It is also evident that RTKs sometimes can bypass SOCS regulation and SOCS proteins can even potentiate RTKs-mediated mitogenic signaling. Thus apart from negative regulation of receptor signaling, SOCS proteins may also influence signaling in other ways.