Tuberculosis (TB) is one of the leading infectious diseases in the world. The disease is commonly caused by Mycobacterium tuberculosis (Mtb) bacteria which are capable of rapidly spreading through droplet transmission. In developing countries, poverty and malnutrition cause immunodeficiency which is considered as the main risk factor for the incidence of TB. Treatment of TB has been proven to be difficult because treatment options are very limited and found to be expensive specifically in developing countries. Moreover, the existence of extensively drug-resistant TB phenomena is frequently happening in these countries because of mishandling treatments used for this disease. In Indonesia, the traditional herbal medicine, namely, jamu, has been utilized since a long time ago to treat diseases including TB. The present study by using computational methods found that there are many active compounds that can bound and influence proteins responsible for TB pathogenesis. Besides, these compounds have the potency to modulate the host immune system. The current chapter discussed the possible interaction of the antioxidant compounds with the chelating potential to form a complex with transitional metal as the central atom. In the perspective of bioinorganic chemistry, this complex has a scavenging activity which is expected to have a role in overcoming energy management of the host cell during infection pathogenesis. It is important to involve bioinorganic chemistry in energy management during infection, correlated with impairing of niacin metabolism of the host cell in which the host cell mitochondria cannot competitively gain free radicals during infection. This phenomenon is the main reason to propose herbal medicine as a source of niacin and provide a proper environment for gastrointestinal commensal microbiota to treat and govern protection from TB infection.