BackgroundJoint impact injuries initiate a progressive articular damage finally leading to post-traumatic osteoarthritis (PTOA). Racehorses represent an ideal, naturally available, animal model of the disease. Standardbred racehorses developing traumatic osteoarthritis of the fetlock joint during the first year of their career were enrolled in our study. Age-matched controls were contemporarily included. Biomarker levels of equine osteoarthritis were measured in serum and synovial fluid (SF) at baseline, and repeated yearly over the next 4 years of training (from T1 to T4). The effect of time and disease on the biomarker concentrations were analysed, and their relationship with clinical and radiographic parameters were assessed. We hypothesized that the kinetics of pro-inflammatory cytokines and structural biomarkers of joint disease would demonstrate progression of degenerative joint status during post-traumatic osteoarthritis and clarify the effect of early joint trauma.ResultsThe concentrations of IL1-ß, IL-6, TNF-α in the SF of PTOA group peaked at T0, decreased at T1, and then progressively increased with time, reaching levels higher than those observed at baseline starting from T3. CTXII and COMP levels were similar in PTOA and control horses at baseline, and increased in serum and synovial fluid of PTOA horses starting from T2 (serum and synovial CTXII, and serum COMP) or T3 (synovial COMP). The percentual change of TNF-α in the SF of the affected joints independently contributed to explaining the radiological changes at T3 vs T2 and T4 vs T3.Conclusions Temporal changes of selected biomarkers in STBRs with an acute episode of traumatic fetlock OA demonstrated that long-term increased concentrations of inflammatory cytokines, type II collagen fragments and COMP, in the SF and serum, are related to PTOA. Based on the observed decrease in inflammatory merkers at T1, we hypothesize that the progression of PTOA could be effectively modulated by proper treatment strategies. Annual variations of synovial concentration of TNF-α can reliably predict radiographic progression of PTOA.